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A theoretical calculation is made of the decay of turbulence energy in the presence 
of coherent internal gravity waves of various intensities. The waveturbulence 
interaction considered is energy production by wave shear. The production term 
(stress) is calculated by a second-order closure, with temperature fluctuations 
accounted for by buoyancy subrange theory. This formalism applies to large or small 
turbulence Froude number, both extremes of which are often encountered in 
experimental turbulence decay. The theoretical turbulence decay is shown to be a 
universal function of the wave shear (strain rate) and wave frequency provided that 
the energy is expressed in terms of the buoyancy wavenumber k,, and time is 
expressed in terms of N ,  the Brunt-Vaisala frequency. With the amplitude of wave 
shear characterized by a gradient Richardson number Ri,, the turbulence decay is 
found to undergo a sudden transition from rapid decay to a much slower oscillating 
decay when Ri, is less than about 0.4. The transition time occurs a t  about t % 2nN-'. 
If Ri, exceeds 0.8 the rate of decay exceeds that, of a neutral fluid. A transition in 
turbulence decay was observed in experiments by Dickey & Mellor (1980). It might 
explain the continued presence of turbulence in dynamically stable regions of oceans 
or atmosphere. The theory is compared in much detail with the Dickey & Mellor 
experiment. A briefer comparison is also made with other experiments, and with 
previous calculations of turbulence maintenance by steady mean shear. A simple 
explanation is proposed of why a transition is observed in a vertical grid experiment 
but not, in horizontal grid experiments. 

1. Introduction 
Recently, Dickey & Mellor (1980, hereinafter referred to as DM) conducted 

experiments of decaying turbulence in neutral and stratified fluids. As the turbulence 
energy was allowed to decay in a stratified fluid, they found a transition in the energy 
decay rate in which the decay was slowed down and oscillated with time. Related 
turbulence transitions have been observed previously (e.g. Pao 1973 ; Lin & Pao 1979; 
Lin & Veenhuizen 1974). The new aspect of the DM experiments is that a sharp 
transition was found in the energy decay law. (Previously a transition was observed 
visually and in shadowgraphs but not in the measured energy decay.) 

Similarly appearing sinusoidal oscillations of turbulence intensity have also been 
observed by radar observations of the atmosphere (Van Zandt, Green & Clark 1979; 
Ruster, Rottger & Woodman 1978). DM characterized the observed turbulence decay 
as a transition from a turbulence regime to a coherent gravity-wave regime. To 
calculate the transition time, they hypothesized a decreased dissipation rate, which 
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implies an interruption of the cascade process by the gravity waves, An alternative 
mechanism is simply that turbulence and gravity waves coexist, with the waves 
‘feeding energy into the turbulence; i.e. turbulence production due to wave shear. 
Wave-shear-turbulence interactions are known to occur in the atmosphere, and one 
wonders to what extent such an interaction can quantitatively explain the turbulence 
decay observed by DM, or in other turbulence experiments for that matter. 

The purpose of this paper, then, is to calculate the production of turbulence by 
gravity-wave shear, and the influence of this production on turbulence decay. I n  this 
calculation, the stress (momentum flux) which occurs in the production term must 
be formulated with sufficient care to account for both large and small Froude number, 
the ratio of turbulence kinetic energy to potential energy. Both extremes are 
generally encountered by decaying turbulence. An eddy-diffusion coefficient of the 
typical form avo k;l (where a is an empirical constant, vo is the variance of turbulence 
velocity and k;l is a scale length of the turbulence) is not appropriate to these 
extremes because the scale length k;’ varies greatly with Froude number and, if 
uncorrected for, causes an overestimate of the rate of wave shear production. Instead, 
a second-order closure is used for the stress with temperature fluctuations accounted 
for by buoyancy subrange theory. This theory allows us to dispense with the 
temperature equation (thermodynamic equation). The formulation is equivalent to 
standard second-order closures, and its relative simplicity permits an analytic 
expression for the stress to  be derived. The derived stress is expected to  have the same 
form as an eddy-viscosity model, but with a viscosity coefficient that  applies to 
arbitrary Froude number. 

With this formulation, the turbulence decay is calculated for various wave fre- 
quencies and amplitudes. The theoretical decay is afterwards compared with that 
observed by DM, and more briefly with other experiments. A comparison is also made 
with previous considerations of turbulence maintenance by steady mean shear (Monin 
& Yaglom 1971) - the limit of zero wave frequency. Attention will also be given to 
the puzzling question raised by DM of why a sudden transition in turbulence decay 
was not observed with a horizontally towed grid experiment (e.g. Lin & Veenhuizen 
1974) but was observed with their vertically towed grid. 

Although our wave turbulence calculation was motivated by the DM experiment, 
we hope i t  will be of geophysical interest as well. Gravity waves and turbulence are 
known to coexist in oceans and atmospheres, where their interactions are of 
fundamental significance (e.g. Gargett et al. 1981 ; Caldwell et al. 1980; Dutton & 
Panofsky 1970; Boucher 1974; Einaudi, Lalas & Perona 1978/79; Van Zandt et al. 
1979 - see their figure 1 ; Ruster et al. 1978). However, the details of these interactions 
are difficult to measure in a geophysical environment. For this reason laboratory 
investigations can often be of especial importance. 

Very recently, Fua et al. (1982) considered a gravity-wave-turbulence interaction 
for the interesting case where the background gradient Richardson number is slightly 
larger than + and the wave amplitude small. Consideration was given to the more 
elaborate problem of turbulence ‘triggering ’ by a small-amplitude wave, rather than 
to turbulence decay in the presence of large-amplitude waves. I n  their formalism, 
Fua et al. considered a ‘feedback’ of turbulence on wave, which we do not, and 
described wave-shear interaction by the eddy-viscosity coefficient avo k;l. 

The organization of the paper is as follows. A theoretical formulation of the wave 
shear production is given in $2.1. The principal result is a dimensionless equation that 
determines the temporal evolution of turbulence kinetic energy density. A brief 
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comparison is made with laboratory and atmospheric observations in 52.2, and a 
detailed comparison is made with the DM experiment in 53. Section 4 contains a brief 
discussion of turbulence maintenance, and 55 is a summary. 

2. Turbulence decay in the presence of gravity waves 
2.1. Theory 

Our aim is to solve the energy-balance equation for turbulence decay in the presence 
of wave-shear production. The energy-balance equation (Reynolds-stress equation) 
is approximately given by 

(p’u‘)  * v q  (&+ U;V) ($) = - (24‘. (U’VU,)) + P: - 6”) 

where U, is the mean velocity of the coherent gravity waves, u‘ is the random 
fluctuation velocity (turbulence velocity), h2 = t (u’*u’)  is the turbulence kinetic 
energy, po is the average particle density, p’ is the fluctuation density, Po is the average 
pressure, 8, is the energy dissipation rate due to molecular viscosity, and the angular 
brackets denote an ensemble average. Correlations of triple-velocity and pressure- 
velocity fluctuations (turbulent diffusion) are neglected under the assumption that 
the fluctuations are approximately homogeneous. That assumption could be relaxed. 

The first term on the right-hand side of ( 1 )  is the production of turbulence by wave 
shear V U,, the second term is the loss of turbulence by buoyancy, and the last term 
is the loss of turbulence by molecular dissipation. 

For simplicity, we consider cylindrical symmetry (with vertical coordinate z and 
horizontal coordinate H ) ,  and ignore the azimuthal components of U,, so that the 
problem is effectively reduced to two coordinates ( z  and H ) .  Consideration is given to 
only the mean shears BW/aH and a u H / a z ,  where W and UH denote respectively the 
vertical and horizontal velocities of the coherent gravity waves. Equation (1) then 

where ui and u;I are respectively the vertical and horizontal components of u’. 
The main task is to express the terms on the right-hand side of (2) as functions 

of q2 and VU,, so as to obtain a closed equation for q2. The key term to be derived 
is (u; u;I). 

This term is derived in the Appendix by means of a standard second-order closure 
combined with buoyancy subrange theory. The resulting expression for (ui u;I) 
agrees in form with an eddy-viscosity model and is given by 

where k, is a characteristic wavenumber of the energy-containing region of the 
spectrum defined by (A 13), N = ( q p i l  i3po/az): is the Brunt-Vaisala frequency, and 
T~ is the Lagrangian timescale of a stratified fluid. This timescale applies for all k,  q / N  
(turbulent Froude number). Note that T~ properly reduces to the correct neutral limit 
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as N+O (e.g. Tennekes & Lumley 1972). It also reduces to the correct strong- 
stratification limit as N +  co, in agreement with Lilly, Wac0 & Adlefang (1974), 
Caldwell et al. (1980) and Weinstock (1978b). 

The difference between (3) and an eddy-viscosity formulation is that, instead of 
~ L q 2 ,  the latter has an eddy-viscosity coefficient given by ak,q,  where a is an 
empirical constant. Such an eddy coefficient does not fully account for stable 
stratification and overestimates the rate of mean-flow-turbulence energy transfer. 

The second term on the right-hand-side of (2), the buoyancy-flux term, is given 
in the Appendix by (A 12) as 

(p'u')'VP,/p: = - ~ L q 2 N 2 ,  (5) 

and ev is given by (A 14) in terms of q and k,. On substituting (3) and (5) into ( 2 ) ,  
the energy -balance equation becomes 

where T~ is given by (4) and ev by (A 14). This equation differs from previous ones 
only in that rL is given by (4), which is appropriate for stratified fluids. This equation 
could also have been obtained by a standard second-order turbulence model, with 
perhaps different values of the numerical constants in rL. The use of buoyancy 
subrange theory merely allowed us to dispense with the temperature equation. The 
fairly simple-looking appearance of (6) is due to our simplifying conditions of 
quasi-homogeneity and small anisotropy. The anisotropy is maintained small by the 
coherent gravity waves which, we will see, retard the energy decay (small anisotropy 
of kinetic energy is observed by DM). By means of these simplifications we are able 
to treat stratification in a more rigorous fashion and isolate its influence on turbulence 
decay. 

We next show that (6) can be non-dimensionalized to obtain a universal equation 
for wave-shear-turbulence interactions. To do so, i t  is convenient to first express the 
mean strain rate in terms of gravity-wave parameters as follows : 

aw a u H  -+- = So(r)cos(crt+$), aH az (7 )  

where So(r)  denotes the amplitude of the mean strain rate a t  position r ,  cr is the 
frequency of the wave, and $ its phase. I n  general, S,(r)  is the sum of many Fourier 
components S,(k) = SdrS,(r)exp(ik*r), and may be spatially periodic. It is also 
useful to express the mean strain rate in terms of the gradient Richardson number 
Ri by 

Ri = N2S-2 
0 -  0 '  

and of course Ri oscillates with time because a W/BH+aUH/az does. Here, Ri, is the 
amplitude of the oscillation. We treat the amplitude magnitude Ri, as a variable 
parameter to see how i t  influences the theoretical decay of q2. The energy decay is 
now obtained in terms of gravity-wave parameters, and k, by substitution of (4), (7 )  
and (A 14) into (6) :  

a q2 0.067k0 q2N2 [Ri,' COS' (d + $) - 11 -0.083k0 q3. - -- - 
at 2 ;1c;q2+0.8~2 (9) 
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Finally, we reduce (9) to  a dimensionless equation in terms of a dimensionless length 
and time. We are encouraged to do so because there is reason to believe that stably 
stratified turbulence has a universal behaviour when the turbulence-energy length 
k i l  is expressed in terms of the buoyancy wavenumber k,  = NqP13: and time is 
expressed in terms of the BruntiVaisala frequency (e.g. Gargett et al. 1981; 
Weinstock 1978a; Lumley 1964). The dimensionless length is 34Nq-lk;' = kB/ko ,  
which can also be viewed as a dimensionless r.m.s. ve1ocit)y since i t  depends on q. We 
use the simplifying notation 2 = 34Nq-lk;l. The dimensionless time is Nt. To express 
(9) in terms of these dimensionless scales, we divide both sides by koq3 and replace 
t by N t / N  to obtain 

0'067 [ Ri;' cos2 (g Nt + 4) - 11 - 0.083. (10) 
a NqP2 - (k; lq) - -  = 

a(Nt)  2 2-2+0.8 

The non-dimensionalization of (10) would be complete if k,/q were constant, or slowly 
varying compared with q2, since then we would have 

The near constancy of k,/q has been well documented for the initial stages of 
turbulence decay in neutral fluids (e.g. Batchelor & Townsend 1948; DM), where it 
is found that q2 K t - l ,  and kt oc t- l ,  so that 

k,  = Aq, A x constant. 

For our case of stratified fluids in the presence of coherent gravity waves DM find 
that k,/q is nearly constant throughout the relatively long duration of their 
experiment of several Brunt-Vaisala periods. We will assume in (10) that k o / q  is 
relatively slowly varying for turbulence decay over the first several Brunt-Vaisala 
periods. I n  that case, (10) reduces to the desired dimensionless energy-decay equation 

az 
a(Nt)  - 2-2 + 0.8 

z E 3:Nq-'k,1 = 3iA-lNq-2. 

This surprisingly simple equation shows that turbulence decay in a stratified fluid 
in the presence of coherent gravity waves is a universal function of the wave 
Richardson number Ria and the dimensionless wave frequency a / N  - provided that 
the r.m.s. turbulence energy is expressed in terms of Nk;l and the time expressed 
in terms of N .  

The solution of (11)  for Z is easily obtained by computer and for various values 
of Ria and a / N .  The solutions for a / N  = 0.65 with q5 = 0 are given in figure 1 ,  
a / N  = 0.325 with q5 = -in in figure 2, and a = 0 with 4 = 0 in figure 3.  These figures 
show that the behaviour of the turbulence decay depends strongly on the value of 
Ria. The most distinct or unusual behaviour occurs for the range Ria < 0.4. I n  this 
range, the initially rapid decay suddenly decreases a t  t /2n  - 0.7N-l ,  and thereafter 
oscillates with period 2a. A very similar behaviour was observed by DM (see their 
figure 6). We will discuss this particularly interesting case in 0 3 and examine whether 
or not it can explain the DM experiment - the experiment that  motivates this 
communication. First let us discuss general features of the theoretical decay, and its 
relation to other experiments. 
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FIQURE 1. Theoretical kinetic-energy decay in a stratified fluid showing Z versus t for various values 
of Ri, with u / N  = 0.65 and 4 = 0. The dashed line is for a neutral fluid. The points are experimental 
data taken from Dickey & Mellor (1980). 

1.0 I I I I I I I I I I I I I 

6.0- #=-f* 
5.5 

5.0- 

4.5 

4.0 - 

z 3.5- 

- 

- 

0 2 4 6 8 10 12 14 16 18 20 22 

FIQURE 2. Same as figure 1 with u / N  = 0.325 and 9 = in. 
Nt 
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FIGURE 3. Same as figure 1 with u / N  = 0 and $ = 0. 

2.2. Relation to experiment 
The behaviour of turbulence decay shown in figure 1 can be divided into three 
different classes as follows. For Ri, < 0.4 the turbulence decay undergoes a sudden 
transition near (27c - l t  - N from rapid monotonic decay to slow oscillating decay; 
for 0.4 < Ri, < 0.8 the decay is close to  neutral decay throughout the entire time 
interval, and resembles the decay observed by Britter et al. (1983); and for Ri > 0.8 
the decay is more rapid than in neutral fluids, and resembles the stratified decay 
usually found in horizontal-grid experiments (e.g. Lin & Pao 1979; Lin & Veenhuizen 
1974). It is evident that  the existence of a transition depends critically on the value 
of Ri,. If Ri, exceeds 0.8 the decay is hardly influenced by coherent gravity waves. 
Such may be the case of previous experiments that used a horizontally towed grid. 

Hence, from a theoretical point of view, the different kinds of experimental decay 
could be accounted for by differences in the amplitudes Ri, of coherent gravity waves. 
I n  particular, this (wave-amplitude) criterion provides a straightforward explanation 
of the differences observed between vertically and horizontally towed grid turbulence, 
and is given special attention a t  the end of $5 .  

With regard to the experiment of Lin & Pao, i t  is seen in their figure 2 that q2 decays 
faster than t-' during the initial interval. A similar behaviour is seen in our theoretical 
figures for Ri, 2 1.5. An explanation is that  the faster-than-t-' decay is due to the 
decay of ( w 2 ) ,  the vertical component of q2, which decays faster than the horizontal 
components ( u 2 )  and ( v 2 ) .  Hence q2 = ( u 2 ) + ( v 2 )  +(w2) decays faster than t-' 
during the initial period where the magnitude of (w')  is still comparable to (u2) .  
After the initial period, however, ( w 2 )  becomes much smaller than (u'), and no longer 
contributes much to the decay. The decay rate then slows down to that of (u') + ( v2 ) .  
This appears so in experiment and theory. However, our calculated decay must be 
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viewed with caution, because the assumption of small anisotropy in Appendix A 
breaks down when Ria 2 0.8 and Nt 2 2. This assumption is only justifiable when the 
gravity waves are sufficiently intense to retard the decay of (w2). 

With regard to radar measurements of the atmosphere by Van Zandt et al. 
(1979 - see their figure 1 )  and Ruster et al. (1978), their observations of sinusoidal 
modulations of turbulence intensity strongly resemble figure 1 with Ria x 0.1. This 
small Ria value corresponds to a large wave shear and implies that a strong instability 
must have occurred. 

3. Comparison with the Dickey-Mellor experiment 
It is very tempting to compare our theory with the experiments of DM because 

the theoretical curves very closely resemble their observations (their figures 4-6). 
However, this comparison is complicated by the fact that, partly, the measured 
fluctuations may be coherent gravity waves of small wavelength and, partly, random 
fluctuations (turbulence). The observations cannot distinguish between the two 
because the measurements are averaged over a volume whose dimensions are about 
12.7 em3. (This spatial averaging will remove gravity wavelengths as large as 12.7 
cm from the mean motion.) Let us then compare theory with experiment under the 
assumption that only a small part of the measured fluctuations are short-scale 
coherent gravity waves, and, afterwards, discuss the implications of that  assumption. 

Upon making this comparison, i t  can be seen that the theoretical decay for Ria z 0.25 
in figure 1 agrees with the experimental measurements (figure 6 of DM) in much detail. 
The value of cr/N in these figures was chosen equal to the experimental value 0.65. 
The main features of the agreement are: (i) a sudden decrease (transition of decay 
rate; (ii) the approximate time Nt a t  which the transition occurs; (iii) the mean value 
of the slope (decay rate) in the internal-wave region (large-Nt region); and (iv) the 
amplitude of the q2 oscillation. (For the quantitative comparison in items (iii) and 
(iv) we used the experimental value A = k,/q = 0.605 s This value is deter- 
mined by noting that DM use the expression cv = q 3 / A ,  and A is a scale that 
they experimentally relate to the integral scale L by A = 4.6. Comparison of their 
c, expression with (A 13) gives k, = 2.6L-'. They also give a relation between L and 
qasqL = J = 4.3 cm2/s. Hencewehavek,/q = 2.614.3 s cm-2 = 0.605 s cm-2. Wealso 
use the experimental value N = 0.378 s-l. The relation between 2 and (ha")-' for that  
experiment is 2 = 0.361(hg2)-l, with q in cm s-l.) We hasten to add that the value 
Ria here has nothing to do with the linear stability condition Ri = a. The present value 
arises from nonlinear considerations, and the fact that the Ri-values are the same 
is a coincidence. There is a wide range of Ria for which the transition occurs, and the 
experimental value could have had any of these. 

The preceding value Ria = 0.25 was obtained by matching the mean slope of the 
theoretical 2-curves (qp2 curves) with the mean slope of the observed q-2 (figure 6 
of DM) in the large-t region. An independent estimate of Ria can be determined by 
comparing the oscillation amplitude seen in figure 6 of DM with the theoretical 
amplitude. An analytical expression for the latter amplitude is readily derived from 
(1  1 ) a t  large Nt because then 2-2 can be neglected in the denominator on the right-hand 
side. 

Straightforward integration of (1  1 )  then yields 
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and consequently the oscillation amplitude is 0.29(4Ri0 uN-l)-l.  Note that ( 1 2 )  
provides two independent ways to determine Ri, from the experiment. One way is 
to set 0.29(2-'Rii1 - 2 )  equal to the mean slope in figure 6 of DM a t  large t (this is what 
we graphically did by choosing Ri, so that our graph in figure 1 agreed with the 
experimental curve in figure 6 ) .  The other way is to set 0.29(4RiaN-')-l equal to 
the experimental amplitude in figure 6. Denoting that amplitude by A.Zexp, we have 

Ri, x0.3, 

with AZ,,, x 0.36. This value of Ri, is not far from the value 0.25 previously obtained 
by comparing the mean slope of theoretical and experimental energy decay. However, 
despite the favourable comparisons, there is a reason to question the validity of the 
comparison between our theory and the DM experiment - as we explain next. 

Validity of the comparison 
The preceding comparison between theory and experiment was based on the 
assumption that only a small part of the fluctuation energy is in the form of coherent 
gravity waves, and that most of the energy is due to random fluctuations (turbulence). 
The difficulty with this assumption, as pointed out by a referee, is that  the reported 
mean motion (a coherent oscillation at  frequency u x N )  is too weak to satisfy 
Ri, x 0.25. That value of Ri, is required in order for the theory to explain the 
experiment. Unless a source of small Ri, can be justified, the close agreement between 
theory and experiment may be just a remarkable coincidence. This discrepancy can 
be resolved if the observed fluctuation energy contains coherent gravity waves as well 
as turbulence. This case is given in the paragraph after next. 

First let us consider a possibility, suggested by a referee, that the fluctuation energy 
is entirely in the form of coherent gravity waves. While possible, this assumption is 
also not free of drawbacks. For one thing, DM find that kJk, x 1.6 (from (I x 0.65N) ,  
while a t  the same time ( w 2 ) / ( u 2 )  x 1 . l .  But coherent gravity waves with k , / k ,  x 1.6 
will have ( w 2 ) / ( u 2 )  x k i / k :  x 0.4. Such a large discrepancy in ( w 2 ) / ( u z )  cannot be 
attributed to experimental inaccuracies. Note, too, the spatial correlations shown in 
fig. 1 1  of DM. To us, the smooth and very broad correlations resemble random 
fluctuations more than they do coherent waves. Incidentally, a complication with 
deducing the influence of short-scale coherent waves on the measurements concerns 
whether such waves are 'standing' (e.g. U = U, cos (k. R )  cos (ut+ $)) or 'travelling' 
( U  = U, cos (k. R + ut + 4)). I n  the latter case the experimental spatial average would 
give U2 = +U;, a constant, which does not oscillate with time, whereas the former case 
would give 

A third possibility is that part (say half) of the fluctuation energy is coherent 
gravity waves and half is turbulence, with the latter maintained by the coherent 
gravity waves according to ( 1  1 ) .  The value of Ri, for a coherent wave of that energy 
(about 0.12 cm2/s2 a t  t = 1.6 s) is Ri, = N2k-2(0.12)-1 x 1 if k2 x 1.2. The turbulence- 
energy curve for Ri, = 1 is shown in figure 1 .  Let us add the energy of the coherent 
wave to the turbulence energy curve for Ri, = 1 a t  $ = -+K. This is done for three 
cases: (a )  travelling waves = aU: cos2 ( c r t + $ ) ;  and 
( c )  half-travelling-half-standing waves U2 = aU:[l+ cos2 (ut + $). The resulting 
curves are displayed in figure 4. Case ( c )  resembles the observation, and case (b )  does 
to a lesser extent. Case (a )  can be eliminated. 

- 

= i q  cos2 (ut+$), which does oscillate with time. 

= $q; ( b )  standing waves - 
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FIGURE 4. Theoretical kinetio-energy decay when half the energy is in turbulence as given by (1  1 )  
with Ri, = 1.0 and half the energy is in coherent gravity waves. The values of CT and N are the 
same as in Dickey & Mellor (1980), and Ri, = 1.0. There are three cases shown: (a) travelling waves; 
(b) standing waves ; and (c) half-travelling-half-standing waves. 

A problem that remains is to reconcile the observed small anisotropy with the larger 
anisotropy of the wave kinetic energy. In  this connection, a referee has suggested that 
the light refraction in the experiment might have contributed spuriously to the 
isotropy and randomness of the data. 

4. Steady mean shear - maintenance of turbulence 
At the suggestion of a referee, we consider the case of steady mean shear (u = 0) 

and compare with previous work. I n  particular, a question that received much 
attention in the past is the maintenance of turbulence by a steady mean shear, i.e. 
what is the minimum value of background Ri, or of flux Richardson number R,, 
required to prevent the turbulence from decaying to zero (e.g. Monin & Yaglom 1971, 
pp. 401403; Yamada 1975). This value is referred to as a 'critical ' value and denoted 
by R&,. To determine Ri,,, we solve (11) for a stationary condition a t  u = 0. 
However, since the numerical constants 0.23 and 0.8 in (1 1) have some uncertainty, 
let us replace them by unspecified coefficients a and b respectively, and solve (the 
number 0.29 characterizes viscous dissipation and, we believe, has little uncertainty). 
Thus we rewrite (1 1) as 

az a ( _- ' 1)-0.29, a(Nt)  - E 2 + b  Ri, 
and solve for aZ/a(Nt)  = 0 as Nt+ co, to obtain 

ZP2 = (0.29)-l a(Ri;'- 1) - b. 

The value of Ri,, is obtained by setting this 27 equal to zero, the smallest value 
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Ri,, = (1  + 0.29b/q1.  

2 1  
of Z possible, and solving for Ri,. The result is 

(14b)  

This relation yields Ri,, = 0.5 for b/a = 0.8/0.23 as chosen in ( 1 1 ) ;  Ri,, = 0.33 for 
b/u  equal to twice that in (1  1 )  ; and Ri,, = 0.2 for b/a four times that in ( 1  1 ) .  However, 
from a practical consideration, these values of Ri,, are a kind of overestimate, because 
the turbulence energy h2 approaches zero as Ri, + Ri,,. 

A comparison of (14b)  with a popular eddy-viscosity model is easily made. That 
model has b = 0 (see $ 1 )  and yields Ri,, = 1 regardless of the value of a (the 
magnitude of the eddy coefficient). For g =I= 0, the eddy-viscosity model overestimates 
the energy when Ria is small (< 0.5), and, more seriously, leads to a divergence when 
Ri, > 1 .  It diverges because the buoyancy flux varies as - aZ2 and removes energy 
excessively rapidly as Z becomes large. 

We expect that (11)  and ( 1 4 a )  are comparable to what would be obtained by 
second-order models - such as the level 4 model of Mellor & Yamada (1974) .  The 
difference is that fewer equations are used, by virtue of buoyancy subrange theory, 
and separate equations for (w2) and (u2)  are dispensed with by virtue of our weak 
anisotropy condition. These simplicities allow us to more readily concentrate on the 
physical significance of the few terms that do occur in the formalism and obtain a 
single closed equation for q .  There are also fewer numerical constants. 

5. Summary and conclusions 
A calculation was made of the decay of turbulence in the presence of coherent 

gravity waves. With this model, turbulence decay is shown to satisfy a dimensionless 
equation that is a universal function of Ri, and wave frequency g - provided that 
the energy is non-dimensionally expressed in terms of the buoyancy wavenumber k,, 
and the time is expressed in terms of the Brunt-Vaisala frequency N .  A simplifying 
limitation of small anisotropy is also made. Solution of this equation shows that the 
influence of waves on turbulence can be divided into three different classes: ( a )  for 
Ria < 0.4 the turbulence decay undergoes a sudden transition near t (2n)-1  = 0 .7N 
from a rapid monotonic to slow oscillating decay; ( b )  for 0.4 < Ria < 0.8 the decay 
resembles that of a neutral fluid; and (c) for Ria > 0.8 the decay is more rapid than 
that of a neutral fluid. I n  all cases the coherent waves effectively decrease the rate 
of energy dissipation - the amount of decrease depending on the wave strain rate. 
Graphs of the theoretical decay including all three ranges of Ria are given in figures 
1-3. 

The theoretical decay for Ri, x 0.25 in figure 1 was found to be in agrccment with 
the observations (figure 6 of DM). However, there is a difficulty with this agreement 
because the reported coherent wave amplitudes are not large enough to yield the small 
Ri, value required by the theory. This difficulty is overcome if we account for ' course ' 
spatial averaging. That is, since the measurements were averaged over a large volume 
(dimensions of (12 .7  ~ m ) ~ ) ,  the observed q2 can be partly coherent waves and partly 
random fluctuations. The combination of (half) coherent wave energy and (half) 
random fluctuation energy leads to figure 4 ( c ) ,  and agrees with the observation 
including the apparent Ri, of the experiment. The possibility that the observed q2 
is entirely due to coherent waves can be discounted by the randomicity implied by 
the measured correlation function and by the near-isotropy of the measured kinetic- 
energy density. 

An important question raised by Dickey & Mellor is why a sudden transition did 
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not occur in horizontally towed grid decay experiments (e.g. Lin & Pao 1979; Lin 
& Veenhuizen 1974), even though internal waves did occur as observed by 
shadowgraphs. Does this imply that horizontal is different from vertical grid 
turbulence '1 A possible explanation is that, in the latter, fluid parcels of higher density 
are moved vertically by the grid into regions of lower density. This situation of 
higher-density fluid resting on top of lower-density fluid causes Helmholtz waves 
which oscillate near the Brunt-Vaisiila frequency. Such waves are produced indepen- 
dently of the turbulence, and can have short scales on the order of the mesh size. 
The horizontal grids have less of a tendency to set up Helmholtz waves (although some 
are undoubtedly present). Hence, the magnitude of Ri, may be larger for horizontal 
than for vertical towed grids. A difference in Ri, could account for the different decays 
of the 2 kinds of experiments. 

It is a pleasure to  thank Carl Love for solving (11) by computer, and for 
programming the solution onto figure 1 4 .  

Appendix: momentum flux in stratified fluids 
The purpose of this Appendix is to evaluate (ui u k )  in terms of V U and the energy 

components (ui2). A basic assumption we use is slow variation of average quantities 
on a Lagrangian timescale. Lumley & Newman (1977) have shown that such an 
assumption works very well for turbulence computations. Our calculation of (u: u k )  
begins with a formal Green-function solution of the Navier-Stokes equation (Wein- 
stock 1981 - see equation (13)) : 

~ ' ( t )  = dr, G(r ,  t ;  I , ,  0) u'(r1, 0) + s 
(A 1) 

where the Green function G(r,  t ; r,, t , )  is defined as the solution of 

(A 2 )  
(&+u'.V+U.V ) G ( r , t ; r l , t l )  =0, 

G(rl,tI;rl,tl) = a(r-rl). 

Equation (A 1 )  can be verified by differentiating both its sides with respect to t and 
then substituting (A 2 )  and (A 1) back into that differentiated equation. The quantity 
G can also be viewed as an integrating factor of the Navier-Stokes equation. 
Fortunately, we will not need to know the explicit expression for G in what follows. 
An expression for (uLu;I) is obtained by multiplying the horizontal component of 
(A 1 )  by ui and averaging. I n  so doing we neglect vV2u' for large Reynolds number, 
and we also neglect the initial-value term u'(rl,O), which is almost always done in 
turbulence theories and which can be justified except for very small values of t .  The 
result is 
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But dr,(u;(t) G(rl, t ; I,, t,) u;(tl)) is precisely a Lagrangian correlation function and 
can be expressed as (e.g. Tennekes & Lumley 1972) 

I", dt, jdr, (u;(t) GP, t ; rl, tl) u;(tl)) = rL(U;(t) u ; ~ ,  (A 4 )  

provided that t 9 rL (which correspond to slow variation on a Lagrangian integral 
time). By definition, rL is the Lagrangian integral timescale. We neglect the variation 
of rL with direction (i.e. we assume rL is the same for all i a n d j  in (A a ) ) ,  which is 
satisfactory for the weakly anisotropic turbulence of the experiments of DM. The 
value of rL for stable stratification has been previously determined (Weinstock 
1978b), and is given at the end of this Appendix. Similarly to (A 4), it can be shown 
that 

On substitution of (A 4 )  and (A 5) into (A 3) we obtain 

Another expression for (uk u:) = (ui uk)  is obtained by multiplying the z component 
of (A 1 )  by u;I and averaging. The result after making the same approximations as 
used for (A 4) is 

where we have used the fact PO varies with z. The pressure-velocity correlations in 
(A 6) and (A 7 )  have been modelled by Rotta (1951) : 

where C ,  w 0.4. Lumley & Newman (1977) suggest a slightly smaller value of C, 
(Weinstock 1981). The quantity pc2(u;Ip') (8PO/az) is determined with use of 

p'/po = -8'/8, = - dt,u;(t,) (M,/az) 8;l and a</& = -g<, 6 
where 8' and 8, are fluctuating and mean potential temperatures respectively. We 
thus obtain 

(A 9) oo aeo.l a2 
a< 
aZ ~, -~(ukp ' ) -  = - -- dt'(uk(t)uL(t,)) = -rL(ukuL)N2. 

This term is found to  be smaller than the others in (A 6) and (A 7 )  and will be ignored. 
An expression for (uiuk) can be obtained by adding (A 6) and (A 7) ,  substituting 
(A 8), and using (uL uk)  = (uh ui) : 

aw a u H  aw au, 
z<u;u;I> = -rL (u~)-+(u:2)-+(u'u' ) -+- [ aH aZ ( a z  a H )  

- - ( u ; u k ) + 0 . 4 e 0 ~ ~ + ~ ) ] .  04  (A 10) 
7 L  aH 
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But a W/az + a U,/BH = 0 for an incompressible flow, so that (u: uk)  in (A 10) is given 
with e,  = 1.5~::  

which is (3), as we set out to prove. 

of 
The buoyancy flux (p’u’)*VP,/p: = (p’u:) (aP,/az)p;2 in ( 2 )  is evaluated with use 

p’ /p  0 -  - - o’/oo = - dt u;(tl) (ae,/az) 001 : 

Finally we must evaluate rL approximately for stably stratified fluids. Such an 
evaluation was previously made by calculating the influence of buoyancy and random 
phased gravity waves on the dispersion of particles in a stratified fluid (Weinstock 
1978a, Appendix B). The details will be found in that reference. Here we only present 
the derived approximate expression for rL:  

kovo - 0.35 koq -- 
k,2 V! + 0.8 N2 3; ki V! + 0.8 N2 ’ rL - 0.35 

where k, is a wavenumber characteristic of the energy-containing region of the 
tmbulence spectrum. This wavenumber is defined with the following energy-spectral 
model E ( k )  previously used by Reynolds (1976) and Comte-Bellot & Corrsin (1966) : 

E ( k )  = ac!k-t ( k  3 k,), 
E ( k )  = a& k,m-j km ( k  < ko) ,  

where B, is the dissipation rate due to  molecular viscosity, ct NN 1.5 is the Kolmogoroff 
constant, and m 2 0 is an adjustable numerical parameter (Reynolds argued that 
m NN 2 is supported by semi-empirical considerations). For this model, q2, B, and k, are 
related by 

q2 = 2 dkE(k) = 2adk,{[l +g(m+ I)-’], 5 
and the variation of q2 with m is very small. We will use a median value of m = 3. 
Hence 

8, = 0.083k,q3 (m = 3), 

which will be needed to  discuss the data of DM. Note that rL reduces properly to 
the correct neutral limit as N-tO (e.g. Tennekes & Lumley 1972). It also reduces to 
the correct strongly stratified limit as N-t  00, in agreement with Lilly et al. (1974), 
Caldwell et al. (1980), Weinstock (1978b) and Zimmerman & Loving (1975). The two 
numerical factors in (A 12) are not exact, but are correct to  within a factor of about 
2. The important point we wish to  make is that changes in these constants will not 
cause qualitative changes in our equations for q2, nor in the theoretical curves of figure 
1-3. Rather, an increase of the constant 0.35 will cause a less than proportionate 
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decrease of the curves in figure 1-3 at  large t ,  and an increase of the constant 0.8 will 
cause a less than proportionate increase of those curves at large t .  The ratio of these 
two constants does influence the value of Ricr in ( 1 3 b ) .  
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